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ABSTRACT 
Bending stresses in the armor wires of a well-designed 

umbilical cable are usually well below the endurance limit of the 
wire material, so fatigue should not be a problem.  However, with 
each bending cycle, the armor wires slip with respect to each 
other.  The possibility exists that the resulting wear and reduction 
in wire cross section area could eventually lead to fatigue crack 
initiation and failure.  Because the armor wires are of circular 
cross section, if a wire in the outer armor layer moves far enough 
with respect to a wire in the inner armor layer, contact is lost, and 
no wear can occur.  Methods are developed for calculating the 
distance for which the wires are in contact during a single 
bending cycle and the depth of wear produced by a number of 
constant bending cycles using Archard's Law of Wear.  This 
procedure is extended to calculate total depth of wear caused by a 
series of environmental loadings on the umbilical, each of which 
results in a different bending curvature of the umbilical.  This 
extension allows calculation of total wear and effect on fatigue 
initiation over the umbilical service life.  Predictions of the 
method agree with results of a qualifying test on an umbilical; 
however, additional testing is required to better define 
characteristics of this type of wear ⎯ particularly the wear 
coefficient for this combination of armor wire geometry and 
material. 

INTRODUCTION 
Bending stresses in the armor wires of a well-designed 

umbilical cable are usually well below the endurance limit of the 
wire material, so fatigue of the wires should not be a problem 
over the service life of the umbilical.  However, with each 
bending cycle of sufficient amplitude, the armor wires slip with 
respect to each other.  The possibility exists that the resulting 

wear and reduction in wire cross section area could eventually 
lead to fatigue crack initiation and failure. 

An umbilical cable, shown in Figure 1, designed by Multiflex 
for installation in deep water, was to be qualified by imposing a 
limited number of bending cycles on a specimen subjected to a 
constant tension.  Calculated values of armor wire bending stress 
were well below the endurance limit of the armor wire material;  
therefore, observable fatigue damage was not expected for the 
50,000-cycle qualifying test.  Wear was expected to be the only 
result of the test, so a method of calculating wear during the test 
was required. 

In addition, prediction of wear during the umbilical service life 
was required in order to estimate the effect of wear on fatigue.  
To this end, finite element analyses of the umbilical suspended 
between a semi-submersible platform and the sea floor were 
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FIGURE 1 UMBILICAL CROSS-SECTION 



conducted for the expected environmental conditions during the 
service life.  The usual method of dividing wave data represented 
by a scatter table of wave height, period, and direction into 
discrete wave height/period load cases was followed.  A more 
detailed description of this methodology is given in Claydon et al. 
(1992).  The result was a table of load cases and their 
corresponding values of maximum bending curvature, which 
occurred at the top of the umbilical. 

Adhesive wear caused by two solids rubbing on each other is 
described by an equation commonly known as Archard's Law: 

V k
F L

H
c =   (1) 

where V is the volume of material removed from the softer of the 
two solids, k is a wear coefficient, Fc is the contact force between 
the two wearing surfaces, L is the total relative contact distance, 
and H is the indentation hardness of the softer of the two solids 
(Archard, 1953, Chang, 1987, Rabinowicz, 1980).  Archard 
(1980) points out that division of both sides of this equation by 
the area of contact gives a depth of wear in terms of a contact 
pressure, and the resulting equation has been used in calculations 
of wear in unbonded flexible pipe armor wires which have a 
rectangular cross-section (Claydon et al. 1992, Estrier, 1992, 
Feret et al., 1986, Nielsen et al., 1990). 

Recent literature on wire ropes and armored power cables has 
described the mechanics of the armor wires and investigated 
fatigue (e.g., Casey and Lee, 1989, Knapp and Chiu, 1988,  
Llorca et al., 1989, Raoof, 1993).  Only Velinsky and Schmidt 
(1988) consider wear in a cable type of structure, but their 
concern is the effect of wear on cable properties (axial stiffness, 
in particular), rather than the prediction of wear. 

The following section presents approximate equations 
describing the mechanics of the armor wires.  Because the armor 
wires are of circular cross section, if a wire in the outer armor 
layer moves far enough with respect to a wire in the inner armor 
layer, contact is lost, and no wear can occur.  Calculation of the 
distance for which the wires are in contact during a single 
bending cycle is described, followed by the development of a 
method based on Archard's Law to calculate the depth of wear for 
a number of constant bending cycles.  This procedure is next 
extended to calculate total depth of wear caused by the complete 
series of load cases, each resulting in a different, constant, 
bending curvature, allowing a estimation of total wear and effect 
on fatigue over the umbilical service life.  The paper concludes 
with a comparison of predictions with results of the qualifying 
test and the implications for the predicted service life. 

ARMOR WIRE MECHANICS 
The following equations represent engineering approximations 

rather than exact expressions of the non-linear response of armor 
wires to bending and stretching of a cable type of structure.  They 
have the great advantage of relative simplicity, and a past history 
of being able to produce useful results when judiciously applied. 

For a straight section of umbilical cable under no load, the 
armor wires have a helical configuration.  For the coordinate 

system shown in Figure 2, the parametric form of the helical 
configuration is given below. 

x R= sin  (2) 

y
R=

tan   (3) 

z R= cos  (4) 

where R is the radius of the helix,  is the parametric angle, and , the lay angle, is defined as the angle between the helical armor 
wire and the y axis. 

If a straight section of umbilical is loaded by an axial tension, 
the stress in each individual armor wire is given by (Berge and 
Olufsen, 1992) 

 a
wT

nA
=

cos
 (5) 

where Tw is the tension in the umbilical, n is the number of 
armor wires, A is the cross sectional area of an armor wire, and  
is the armor wire lay angle. 

When the umbilical (the cylinder in Figure 2) is uniformly bent 
in the y-z plane , the helix now is formed on the surface of a 
torus.  The radius of the torus is the bend radius of curvature, , 
and its reciprocal is the curvature, , of the bent umbilical. 

As the umbilical is gradually bent, the helix is held to the 
surface of the torus by friction. When the curvature reaches a 
certain critical value, friction is overcome, and the helix slips on 
the surface of the torus.  Feret and Bournazel (1987) assume that 
the helix moves into a geodesic curve on the surface of the torus.  
Witz and Tan (1992) assume that a point on the helix slips along 
the tangent to helix. 

Feret and Bournazel (1987) give the stress in an armor wire due 
to the curvature, , of the umbilical as 

   
 b Er

R
= +cos

cos

cos
2

1
 (6) 
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where E is Young's modulus for the armor wire material, and r is 
the armor wire radius.  Note that the wire bending stress is a 
maximum at  = 0, that is, at the location of maximum bending 
stress in a solid circular bar of radius R bent to a curvature .  
This expression is based on the armor wire taking the geodesic 
shape on the bent torus. 

Witz and Tan (1992) provide an alternate expression for the 
bending stress in an armor wire based on tangential sliding of the 
helix 

    b Er= +( sin )cos cos1 2  (7) 

Estrier (1992) gives the following expression for the critical 
curvature at which slip begins to occur between an armor layer 
and its underlying core or layer. 

 
 c

cP f

Er
= 2

28 sin cos
 (8) 

where Pc is the contact pressure between the armor layers caused 
primarily by the axial tension load on the umbilical. (For 
submerged umbilicals, the effects of internal and external 
pressure also contribute), and f is the coefficient of friction 
between the slipping layers 

The contact pressure between the inner armor wire layer and an 
underlying pressure layer (the armor bed in Figure 1) is given by 
Feret and Bournazel (1987).  Feret et al. (1986) state that the 
contact pressure between two tension layers is about equal to half 
this value.  Knapp and Chiu (1988) provide a derivation of 
contact pressure between two armor wire layers and arrive at the 
same basic expression as Feret.  The difference is that Knapp and 
Chiu have a multiplying factor of n/(n+m) instead of 1/2.  Here, n 
is the number of wires in one layer, and m is the number of wires 
in the adjacent layer.  Because the number of wires in a layer does 
not vary greatly from one layer to the next, this factor is always 
approximately equal to 1/2.  The resulting expression is 

P
T

R
c

m= tan2

24


  (9) 

where Tm is the mean, axial tension in the umbilical. 
As the umbilical is bent and its curvature exceeds the critical 

curvature given by Equation (8), the armor layers slip on the 
surface of the torus.  Feret et al. (1986, 1987) and Witz and Tan 
(1992) make different assumptions about the direction of this 
slip.  Berge and Olufsen (1992) point out that the assumption of 
the geodesic curve does not seem to give correct prediction of the 
hysteric bending behavior; and that better predictions are 
obtained by assuming only longitudinal slip along the tangent to 
the armor wire axis.  Further developments here are based on the 
axial slip assumption of Witz and Tan (1992). 

Figure 3 illustrates schematically the nature of the armor wire 
axial slippage.  Dotted lines show the straight umbilical with 2 
armor wires of opposite lay in contact at Point A.  When the 
umbilical is bent and the wires do not slip, Point A moves to 
Point A'.  This is shown in Figure 3 with solid lines.  Axial strain 
in each wire is not constant along its length in this no-slip 
condition, so when friction is overcome, the wires slip along their 
own tangents to redistribute the axial strain.  The motion is such 
that tensile strains are reduced and compressive strains are 
increased (toward zero).  Portions of the wires above the bend 
neutral axis develop tensile strains.  Hence the motion in the 
right-hand lay wire is from Point A' toward Point B'.  Similarly, 
the motion in the left-hand lay wire is from Point A' toward Point 
C'. 

Tan et al.  (1991) give the maximum slip of a wire along its 
own tangent, which occurs at Point A in Figure 3, as 

  
=  

cos

sin

2

R2  (10) 

This agrees with the expression for the tangential component of 
slip given by Ferret et al. (1987).  Note that Ferret et al. also have 
a component of slip perpendicular to the tangential direction in 
order to reach the geodesic configuration. 

CONTACT DISTANCE 
Consider that some wear between armor layers has already 

occurred, and develop the surface of contact onto a plane.  The 
result is shown in Figure 4.  The dark diamonds, labeled "No-
Motion Contact Area," represent the contact area between flats 
worn on two wires when the umbilical is straight.  Point A, 
located in the central diamond, is the same Point A of Figure 3 
where two wires cross the neutral axis of the umbilical.  As the 
umbilical bends, the wires slip, changing the location of the areas 
in contact.  Around the central diamond, the contact areas on 
each of the top and bottom wires during a bend cycle are 
indicated by cross-hatched areas. 
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At the bottom Left of Figure 4, a section through the top wire 
centerline is shown, with the bottom wires seen as elliptical 
sections.  During a bending cycle, every point of the top wire 
moves an amount I to the left, an amount I back to the original 
position, an amount I to the right (indicated as -I), and an 
amount I back to the original position.  At the same time, the 
bottom wire moves in the same manner along its own axis with 
amplitude II.  The result is that as wear takes place, the 
extensions to the No-Motion Contact Area are formed as shown 
around the central diamond and Point A in the figure. 

Consider only the motion of the top wire in order to define the 
contact (wear) surface on the bottom of the top wire.  The top part 
of Figure 5(a) is the section through the top wire shown in Figure 
4.  Wear is just beginning, so the flat, or chord, t, on the bottom 
wire is less than the slip I of the top wire, that is, 0  t/sin 2 
 .  The motion of Point a, which is located on the top wire 
adjacent to the bottom wire chord extremity, is indicated in the 
figure. 

As Point a moves to the left an amount  and back to its 
original position, there is no contact with the bottom wire.  As it 
moves to the right an amount  and back to its original position, 
the total contact distance is twice the projection of the bottom 
wire chord into this plane, or 2t/sin2.  Point b, located originally 
adjacent to the centerline of the bottom wire has the same contact 
distance for a bending cycle, and in fact every point on the top 
wire which is in contact with the bottom wire chord in the No-
Motion position has this same contact distance.  This is shown in 
the plot of Wear Distance as a function of position in the bottom 
portion of Figure 5(a).  The average wear distance, w  , for every 
point is the area under the curve divided by t/sin2 or 2t/sin2. 

As further wear occurs, the chord length t increases so that t/sin 
2 becomes greater than the slip distance .  This situation is 
shown, and development of the Wear Distance curve is explained 
in Figure 5(b).  Again, the average wear distance, w , is the area 
under the curve divided by t/sin2. 

As still further wear occurs so that t/sin2 becomes greater than 
twice the slip distance , the shape of the Wear Distance curve 
changes again as shown in Figure 6(a).  No further change in 
shape occurs until much of the bottom wire has worn away so 
that the gap, G, between the wires becomes so small that Point a 
in Figure 6(b) contacts and slides over the adjacent wire.  Of 
course, as further wear occurs, the gap distance G decreases.  
From Figure 4, the gap between the wires, G, is easily seen to be 

G
d t= −



2

2
2

2
2

/
sin

/
sin   (11) 

This analysis does not continue past the point where the gap G 
is reduced to zero, i. e., half of the wire is worn away. 
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If the top and bottom wires were in contact throughout a 
complete bending cycle, then the total contact distance would be 
equal to 4.  Each of the average wear distances, calculated as the 
average of the Wear Distance curves shown in Figures 5 and 6, 
may be manipulated into the following form 

w =  4  (12) 

where  is a non-dimensional factor  If t and  are non-
dimensionalized by the wire diameter d, and (^) represents a non-
dimensionalized ( ), the various regions and corresponding values 
of  are as follows: 

0 
sin2

 <   ,     =  
2 sin2

 





t t

      (13) 




,


sin
      +



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t t

sin2
 <  2         =

1
4

1
2

 (14) 

2
sin2

 <  
1

sin2
 -  ,         =  1 -  

sin2
2







       t

t
 (15) 

1
sin2

 -  
sin2

  
1

sin2
,         =  1 -  

1 -  
2    

 

 t t

t
 (16) 

These equations are plotted in Fig 7 for several values of  . 

Wear volume is based on total distance one body has traveled 
over another.  Everything so far has been concerned only with the 
distance traveled by a point on the top wire, but the bottom wire 
is also moving during the bending cycle. Consider two points, 
one on the top wire and one on the bottom wire, which are 
initially in contact.  The point on the top wire moves a distance  
along its tangent during bending of the umbilical, and the point 
on the bottom wire moves a distance  along its tangent.  The 
relative slip between these two points over one-quarter of a 
bending cycle is given by , and is calculated as a vector 
difference as shown in Figure 8.  If the difference in torus radius, 
R, of the two armor wire layers is neglected, then  and  both 
have the same value; calling that value , the magnitude of the 
total relative slip is 

 = 2 cos  (17) 

In order to calculate the total relative distance over which the 
top and bottom wires are in contact, and therefore wearing, the 
same analysis leading to Equation (17) is repeated using the 
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average wear distance w  instead of .  The result is that the total 
relative wear distance over a complete bending cycle is given by 

 w =  2 cosw   (18) 

WEAR CROSS-SECTION 
Consider a number of bending cycles having a constant 

amplitude of curvature.  The distance L in Archard's Law, 
Equation (1), is taken to be the relative wear distance w,, and for 
more than a single bending cycle, 

L w w w wN
 =   +   +   + . . .    

1 2 3
 (19) 

where N is the number of cycles and w is the contact distance 
per cycle give by Equation (18).  Multiply the right hand side of 
Equation (1) by N/N and observe that L/N is the average relative 
contact distance per cycle.  Using Equations (18) and (12), the 
average relative contact distance, and hence L/N, may be 
expressed as 

L

N
 =  2 cos (4 )    (20) 

where   represents the average value of .  Let t f  represent the 

final value of the non-dimensional chord distance t  after N 
cycles; then this average value of   is given by 

 = 1
0




t
dt

f

t f  (21) 

Archard's Law, Equation (1), becomes 

V
kF N

H
c= 8   cos

 (22) 

Equations (21) and (22) are the desired equations for the wear 
volume in terms of the final chord distance t.  But cross-sectional 
wear, rather than volume, is of concern. 

The volume of material that is worn off the top armor wire is 
distributed over some distance along the wire.  Figure 9 is a 
greatly exaggerated view of the wear along the top wire for the 
condition shown in Figure 6(a).  Between Points b and c, the 
wear depth should be constant at some value h.  The variation in 
depth between Points b and e is not known exactly, but if it is 
linear as shown, then the volume of the worn-away trapezoid is 
merely the depth, h, times the distance ad, which is t/sin 2.  That 
is, cross sectional wear area can be obtained by dividing the 
volume of material worn away by t/sin 2. 

When this distance is divided into the wear volume, Equation 
(22), the following expression for the cross-sectional wear area is 
obtained: 

A
kF N

H tw
c

f
 =  

8 cos sin2


   

 (23) 

where the hat (^) over  indicates that it has been non-
dimensionalized by dividing by the armor wire diameter, d. 

For a circular cross-section wire, this area is taken to be in the 
shape of a segment of a circle as shown in Figure 10.  Final chord 
distance tf is indicated there, along with the dimension h which is 
a readily measurable depth-of-wear dimension.  In terms of t f , 

the segment area is given by 

A  =  rseg
2 cos   − − − − 1 2 21 1t t tf f f  (24) 

Equations (23) and (24) may now be equated and solved 
iteratively for t f , the final wear chord length, remembering that 

the average , Equation (21), involves one or more of Equations 
depending on the value of t f . 
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For convenience, define the following non-dimensional 
constant, , which contains properties of the umbilical, the armor 
wire material, and the contact load, Fc, which is constant since 
the mean tension in the umbilical is constant throughout the N 
cycles of bending. 

  
=  

8 2
2

kF

H r
c cos sin

 (25) 

Equating Equations (23) and (24) now results in the following 
transcendental equation for the determination of t f . 

 N I t t t t tf ff f f

   cos   ( ) =  -  -   -  -12 2 2

1 1




 (26) 

where 

I t dtf
t f(  ) 
=  

0
 (27) 

Closed-form evaluations of these integrals are provided in the 
Appendix for use in the iterative solution of Equation (Error! 
Bookmark not defined.). 

EXTENSION TO CALCULATION OF SERVICE LIFE 
Although the equations appear complicated, the solution for 

bending cycles of constant curvature described above is 
straightforward.  When several load cases are considered, further 
assumptions are required regarding the order of wear.  Each load 
case contains Ni waves (cycles) which occur over the service life 
of the umbilical, and each load case causes a certain umbilical 
curvature i resulting in a certain i.  The volume of wear for this 
load case is given by Equation (22) as 

V
kF

H
Ni

c
i i i= 8 cos    (28) 

Here, the assumption has been made that the mean umbilical 
tension, and therefore the contact force, is the same for each load 
case; therfore, Fc is not subscripted. 

Now assumptions must be made as to how the wear due to load 
case i occurs in relation to the wear due to some other load case j.  
In reality, all waves which have been grouped into one particular 
load case do not occur first, followed by all waves of a second 
load case, and so on.  However, short of a program to simulate 
changing wave conditions over the course of a year, some 
ordering of the wear caused by each load case is necessary. 

Let the number of load cases be K, and assume the wear due to 
the various load cases are arranged in ascending values of wave 
height.  This assumption allows total service life to be calculated 
as demonstrated below.  Once the equations developed from this 
assumption were programmed and a solution obtained for the 
total service wear, the order of the load cases was interchanged 
and a second solution was obtained.  The two solutions agreed, 
showing that the ordering of the load cases does not affect the 
final solution. 

Load case 1 is assumed to cause the first wear on the wire cross 
section, so the situation is exactly that considered above for 
constant curvature over a number of bending cycles (that is, 
constant ).   Equations (23) and (24) combine as before to give 
an equation exactly like Equation (Error! Bookmark not 
defined.) except for identifying subscripts: 

 N I t t t t tf ff f f1 1 1 1

2

1

2

1 1

2

1 1   cos   ( ) =  -  -   -  -1



  (29) 

For the second load case,  wear begins with a value of the chord 
equal to t f1

 and ends at t f2
 (see Figure Error! Bookmark not 

defined.).  The wear area calculated by using Equation (23) is 
Aw2

, and is equal to 

A A Aw seg seg2 2 1
 =   -   (30) 

When this area is equated to the area given by Equation (23), 
and Equation (24) is used to calculate the worn area, Aseg2

, the 

result is: 
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The dependence of  on the value of  2  has been indicated here 

by writing ( ) 
2 .  Consideration of succeeding load cases 

leads to the following equation which applies in general for any 
load case, i: 
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By using the definition in Equation 35, the average i  shown in 
the preceding equation becomes 
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Each term of the form ( )I ti fi

 ,   may be evaluated directly for 

a given value of t fi
 by using the equations shown in the 

Appendix. 

QUALIFYING TEST 
The qualifying test was done by fixing the umbilical cable ends 

to two supports, applying axial tension, and rocking one support 
in the plane of the umbilical to induce fully reversed bending 
cycles in the cable.  Support rocking amplitude and tension for 

the test were chosen for the test based on results of the various 
finite element analyses of load cases for the installed umbilical. 

The amplitude of the support rocking determined the magnitude 
of the cable curvature, .  Umbilical properties and Equation (10) 
then allowed calculation of the maximum slip, .  Contact 
pressure between the armor wire layers is calculated from 
Equation (9).  This represents a uniform pressure over the entire 
developed surface of Figure 4.  The force on any one particular 
Contact Area will be this pressure times the area, Ac, of the 
parallelogram formed by the lines representing the OD of the 
wires, that is, the area which would be in contact if the wires were 
worn half-way through.  (Another way of saying this is the area 
when the chord t has become equal to the wire diameter d.)  This 
parallelogram area is 

A
d d d

c =   =
sin sin

sin
sin2 2

2
2

2

     (37) 

Surface hardness of the armor wires for the umbilical under 
consideration was not known.  Rabinowicz (1980) states that the 
hardness H is approximately equal to 3.2 times the material yield 
strength.  Archard (1980) quotes a "widely used relationship" 
which states that the hardness H is approximately equal to 2.7 
times the material yield strength.  Feret et al (1986) use a value of 
3 times the yield stress for the hardness in Archard's Law.  
Certainly, to one significant figure, a value of 3 times yield stress 
appears reasonable. 

The other unknown physical property of the armor wire is the 
wear coefficient, k.  Various literature on wear coefficients was 
consulted, but the most applicable appeared to be the results 
calculated by Nielsen et al. (1990) for flexible pipe tendon wires.  
The values given by Nielsen were based on the hardness being 
equal to 3 times the armor wire ultimate strength.  This is not a 
large discrepancy with the previous discussion, since the yield 
strength of armor wires and flexible pipe tendon wires is raised to 
a value very near the material ultimate strength by the cold 
drawing process.  Five of the eight values calculated were less 
than 16 x 10-6; the others were greater than 2 times this value.  So 
a rounded value of k = 15 x 10-6 was chosen.  Numerical 
coefficients should always be used in the form of the equation 
used to define the coefficient, so the hardness in the present 
analysis was represented by 3 times the ultimate strength of the 
wires. 

Equation 37 was programmed into an Excel spreadsheet, and a 
solution for t f  obtained using the Excel capability to iterate on a 

circular reference and a modified interval-halving technique.  
Properties of the umbilical are shown in Table 1. 

For the test  parameters  of mean tension  =  236kN,  curvature  = 0.075 m-1, and 50,00 cycles, a final chord t = 0.844 mm was 
predicted.  Converting chord distance to depth of wear, h, as 
shown in Figure 10, gave 0.0332 mm, or 0.0017 in. 



Examination and measurement of the umbilical at the 
conclusion of the qualifying test showed depths of wear ranging 
from 0.0005 to 0.0011 in.  Edges of the wear scars (where the 
ends of the chord meet the circular OD) were not sharp, but were 
rounded. This is an indication that twisting of the wires as the 
umbilical bends was also contributing to wear.  (See Vinogradov 
and Atatekin, 1986.)  Of course, none of the present analysis 
considers wire twist.  If twist were to be included in the analysis, 
and the same volume of wear were predicted,  the predicted depth 
of wear would be slightly less, bringing it into closer agreement 
with the measurements.  Nevertheless, agreement between the 
present analysis and the qualifying test results is good, and errs 
on the conservative side. 

SERVICE LIFE PREDICTIONS 
In predicting whether an umbilical design is suitable for a 

desired service life, both wear and the effects of wear must be 
considered.  The amount of wear is provided by the solution of 
Equation 37.   Effects of wear are predicted following Feret et al. 
(1986) 

Let the ultimate strength of the armor wire material be denoted 
by Su and its endurance limit by SE.  Let  represent any stress 
S non-dimensionalized by Su, that is 

 = S

Su
 (38) 

The Haigh diagram is as shown in Figure 12, and the equation 
of the Goodman Line is 

   d E s E= − +  (39) 

Let the original operating point of an umbilical armor wire to 
be at point A with coordinates sA, dA.  The equation of line OA 
is given by : 

 
 d

dA

sA
s=  (40) 

As wear occurs,  the cross-sectional area of the wire decreases.  
As the cross-sectional area decreases, the static and dynamic 
stresses increase (inversely proportionally to the remaining area) 
and the operating point moves along line OA toward Point B, the 

intersection with the Goodman line.  The coordinates of Point B, 
are obtained by simultaneous solution of Equations (39) and (40) 
to be 

  
     
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E sA

dA E sA
dB

E dA

dA E sA
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Stress is inversely proportional to wire area, so  


 sB

sA

orig

worn

A

A
=  (42) 

where Aorig is the original wire cross-sectional area, and Aworn is 
the cross-sectional area remaining when the operating point has 
reached the Goodman Line and the static stress has increased to sB. 

The worn area, Aworn, is the original area, Aorig, minus the 
allowable wear, Aallow.  With this definition, Equation (42) may 
be solved to give 

A Aallow orig
sA

sB
= −



1


  (43) 

Wear on a sliding armor wire of radius, r, is represented by the 
shaded segment of the original circular cross-section as shown in 
Figure 10.  The area of this segment is given in terms of the final 
chord distance tf by Equation (24) 

Once the final chord distance tf is determined, a factor of safety 
based on wear area, FS, is determined  to be 

FS
A

A
allow

seg
=  (44) 

where the numerator and denominator are Equations (43) and 
(24), respectively. 

This procedure, along with the solution of Equation 37, was 
implemented in an Excel spreadsheet.  Input data for the 
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TABLE 1 UMBILICAL PROPERTIES 
Lay Angle () 20 deg 
Armor Wire Diameter (d) 0.162 in 
Young's Modulus 3.00E+04 ksi 
Wear Coefficient (k) 1.50E-05 mm/mm 
Number of Armor Wires 108  
Radius to Armor Layers (R) 39.115 mm 
Ultimate Tensile Strength (Su) 70 ksi 
Coefficient of Friction 0.2  
Umbilical Service Life 15 yrs 

 



calculations are as previously shown in Table 1.  A portion of the 
spreadsheet is shown in Table 2; included are wave conditions for 
the various load cases, and results of the finite element analyses ⎯ mean tension,Tm, and maximum curvature in the umbilical, .  
Also shown are the calculated values of contact force, Fc, [from 
the product of Equations (9) and (10), curvature at which slip 
begins to occur [from Equation (8)], non-dimensional maximum 

slip,  , [from Equation (10)], and non-dimensional chord length, 
t  [from the solution of Equation (11)].  No wear is calculated 
for the lowest wave height because the maximum curvature 
calculated for this load case is less than the curvature which 
causes slip. 

Because slip is assumed to be tangential as in Witz and Tan 
(1992) and Tan et al. (1991), Equation (7) is used for bending 
stress in the calculation of allowable wear, Equation (43).  The 
value of mean tension is used in Equation (5) for the static stress.  
Calculated results for the dimensional value of the final chord 
length, t, the depth of wear, h, and the factor of safety,  from 
Equation (44), are shown in Table 3. 

The predicted (maximum) area worn from a single wire is 0.91 
square mm, compared to an allowable maximum area of 8.20 
square mm (at which point the wear enters the fatigue regime, see 
Figure 12).  The safety factor against fatigue occurring is seen to 
be 9.0, and is hence satisfactory. 

Based on the conservatism of the qualifying test wear 
prediction, this factor of safety should also be conservative.  
Additional conservatism is built in, because the condition 
limiting umbilical service life has been taken to be the start of 
fatigue, rather than fatigue failure. 

CONCLUSIONS 
A method of predicting wear on circular cross-section armor 

wires has been developed which accounts for the fact that wires 
are not continuously in contact during a complete bending cycle.  
Although based on approximate equations describing the 
mechanics of the helical wires and the use of average values in 

several critical junctures in the development, predictions of the 
method agreed well with results of the qualifying test. 

In order to calculate service life, the method has been extended 
to a series of load cases, each of which produces a different value 
of cable curvature.  However, no test results are yet available to 
confirm these predictions. 

Tests to determine values of the wear coefficient for this 
specific type of wire (both geometry and material) are needed.  
These tests should also investigate the assumptions made about 
the relationship between the volume of material worn away and 
its distribution along the wire (Figure 9). 
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APPENDIX - EVALUATION OF INTEGRALS 
The integrals defined by Equation (45) for each region of  are 

evaluated using Equations (46) - (47).  From the first of these 
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In the second region, the integral must be evaluated by 
integrating over the complete first region with its associated 
formula for , and then continuing into the second region with its 
associated formula for , thus 
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Similarly, in the third region, 
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and in the fourth region, 
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