Cruise Ship Collision Barrier

A new type of collision control barrier is under design and development.  The design brings a very large cruise ship (or any other vessel) gradually to a stop, converting the vessel’s initial kinetic energy to potential energy stored in two structures on either side of the barrier.

14-14

Hydrodynamic analysis with OrcaFlex is used to confirm and improve upon closed form analytical solutions developed by STA.

Designs have been developed for cruise ships up to 333m length with gross tonnage 150,000 and velocity 6 knots.

Marine Salvage Dynamics – Sewol Salvage

Sewol Side Lift Partly Emerged 1

Sewol Salvage: Stewart Technology Associates worked as Technical Advisors to Shanghai Salvage Company using STA software and were responsible for all dynamic analysis of the complex lifts in the open ocean environment.  All lifts are dynamically sensitive and involved cutting edge marine salvage dynamics. Analyses were performed with waves in the time domain using FEA (OrcaFlex).

Marine Salvage Dynamics of Sewol Salvage raised with ZPMC 12,000 ton floating crane and 1,200 ton lifting frame.

32 HMPE upper slings, 8 balance slings, 34 pairs of steel lower slings.

Fully coupled 6 DOF time-domain dynamic analyses in OrcaFlex with diffraction forces on the Sewol and ZPMC crane barge.  All individual sling tensions computed during all stages of the Sewol Salvage.

Sewol and Floating Dry Dock 1

Sewol wreck transfered to semi-submerged floating dry dock in open ocean.  OrcaFlex time domain dynamic analysis of three main vessels, lifting frame and all slings.

The following video describes how STA has examined the issues of unusually low freeboard and trapped water on the pontoon deck.

The video provides a description of how OrcaFlex is used to cope with time domain calculations of the wave motions of the floating dry dock when the deck becomes submerged and the buoyancy of the wing tanks is of critical importance.

More details of the accident can be found at:

gCaptain

Wikipedia

The  portfolio item below provides a short OrcaFlex Tutorial with a Mooring Analysis example.

http://stewart-usa.com/portfolio/orcaflex-tutorial-flupsy-mooring-analysis-example/

SPM Squall Analysis

CALM Buoy modeled in OrcaFlex

CALM Buoy modeled in OrcaFlex used in Wind Shift, or Squall Analysis of Suezmax Tanker

CALM Wireline1

Wireline view of SPM CALM Buoy modeled in OrcaFlex.

A Suezmax tanker is moored via a hawser.  View list of STA software.

SUEZMAX Perspective1

Suezmax tanker seen in shaded perspective view in OrcaFlex, moored to SPM CALM buoy during squall analysis.

The portfolio item below provides a short OrcaFlex Tutorial with a Mooring Analysis example.

http://stewart-usa.com/portfolio/orcaflex-tutorial-flupsy-mooring-analysis-example/

3 Projects That Can Benefit From Hydrodynamic Analysis

Published by Stewart Technology Associates on June 20, 2016

View list of STA software.

The portfolio item below provides a short OrcaFlex Tutorial example of Mooring Analysis.

http://stewart-usa.com/portfolio/orcaflex-tutorial-flupsy-mooring-analysis-example/

3 Projects That Can Benefit From Hydrodynamic Analysis

Water can behave in many different ways, depending on the circumstances, and any structure or equipment that is in a marine environment or to be used near the water, must be thoroughly prepared for the forces that will operate on it. These forces are constantly changing and include tidal forces, wave action, undersea currents, high pressures, corrosion and chemical reactions. If a structure or piece of equipment is not designed properly for a marine setting, it could have a significantly reduced lifespan, require increased maintenance and pose a threat to nearby personnel.

Industry personnel can use hydrodynamic analysis to improve marine equipment and structure designs. By modeling the behavior of the water and the structure or equipment exposed to it, design problems and structural deficiencies can be discovered, and the design can be improved before the equipment or structure is put into production. This process can save large amounts of time and money, and can improve the safety of marine structures and equipment.

Here are a few examples of projects that can benefit from thorough hydrodynamic analysis:

#1 Oil Rig Design

Large, off-shore oil rigs are often limited-production designs, with only a few examples actually being built. This means it is difficult to test the designs thoroughly before production, and any mistakes in the design can be difficult and expensive to repair later. By using hydrodynamic analysis, the manufacturer can thoroughly test the design before it is put into production, and improve it to minimize any problems.

The hydrodynamic analysis will model the effects of the marine environment on every part of the oil rig, from the anchors that tie it to the seafloor, to the platform legs, risers and superstructure. It can pinpoint structural deficiencies, where forces like wave action slowly wear away at sensitive components, such as moving joints, and eventually cause dangerous structural failures or prolonged maintenance problems. This allows the designers and engineers to redesign these components to better withstand the forces at work in the marine environment, reducing maintenance costs, increasing the design life and protecting the safety of the personnel.

#2 Pump Design

Pumps are critical in a marine environment. Bilge pumps remove excess water from a ship’s hull to prevent an over-accumulation that could cause the ship to sink. Fresh water pumps circulate drinking water through the plumbing for ship personnel, and other pumps may be used for fire protection. Oil pumps are used to keep the moving parts of a ship lubricated, or to transfer oil from production wells to tankers. Fuel pumps provide ships and generators with the fuel they need to run.

Pumps used in a marine environment must be able to withstand corrosion and electrochemical reactions caused by saltwater exposure, and they must be able to transfer fluids quickly and efficiently without overheating and failing. Hydrodynamic analysis can be used to model both the behavior of water on the exterior of the pump and the behavior of liquids as they travel through the pump.

The models can be used to design pumps which are better suited to the forces at work in a marine environment, making them stronger and more resistant to the effects of pressure and corrosion that cause maintenance problems. They can also be used to increase the efficiency of the pump, by showing how the fluids travel through the body and the impellers. By using the results to eliminate unnecessary cavitation and friction, the pump design can be made much more efficient, saving energy, reducing maintenance requirements, and extending the pump’s lifespan.

#3 Accident Reconstruction

Working in a marine environment can be especially dangerous for personnel and equipment. Bad weather, rogue waves, fire, equipment failures and other common problems can quickly lead to dangerous situations in the contained environment of a ship, drilling rig or other marine platforms. Accidents can and do happen, including collisions, fires, oil spills, sunken vessels and other catastrophes. Determining the cause of an accident and the results are often the key to improving marine designs and preventing similar accidents in the future.

Hydrodynamic analysis is one of the most powerful tools for determining the cause of a marine accident. The process can be used to model the behavior of the water and any structures, vessels, or equipment that are in the water. It can help determine why two ships collided using accurate modeling, which part of a structure failed, why fire protections systems malfunctioned during an emergency, or how an oil leak was caused and where the oil will be traveling.

With accurate modeling, hydrodynamic analysis in conjunction with other tools can reconstruct every variable at play during an accident, and determine the cause and effect of each action taken. The results can be used to improve the designs of marine equipment and structures to prevent similar accidents in the future, to institute new safety procedures that minimize casualties, and to take further action to protect the safety of ship personnel and minimize liability issues.

Other Applications

These are just a few of the ways that hydrodynamic analysis can be employed in real-world applications. It can also be used to improve the designs of sea-faring vessels, mooring systems, sub-sea pipelines, floating pipelines, drilling risers, anchors, mooring lines, liquid-storage systems, buoys, marine weapon systems, off-shore wind turbines and wave power generators. Furthermore, it can be used to help during oil spill cleanup or containment operations, for forensic analysis, marine training simulations, risk assessments, financial assessments, emergency preparedness and accident prevention. Hydrodynamic analysis is a versatile tool, and it has many critical applications across multiple industries, including oil and gas production, energy production, shipping services, defense, maritime entertainment and oceanography.

With so many applications, hydrodynamic analysis is very important to any marine based-operation, and through its accurate modeling, it can help improve the design and operation of many marine-based structures, tools and equipment. It can help cut design costs and minimize production delays, and improve the safety of marine-based personnel.

Sources:

http://stewart-usa.com/default.php

http://stewart-usa.com/hydrodynamic-analysis.php

http://stewart-usa.com/expert-witness-marine.php

http://www.ntsb.gov/investigations/AccidentReports/Reports/SPC1501.pdf

Web Marketing by Server Side Design, Inc.
Owner of stewart-usa.com is entirely responsible for all content on this web site. Email stewart-usa.com